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The Prandtl boundary layer equation

Fluids with small viscosity

Goal: understand the behavior of 2d fluids with small viscosity in a
domain Q C R?.

O’ + (u” - V)u” + Vp” —vAu” =0in Q,
divu” =0in Q, (1)

v . v . v
UlaQ = 0, u‘tzo = Ul'm'.

— Singular perturbation problem.
Formally, if u¥ — uf, and if Au” remains bounded, then uf is a
solution of the Euler system

oruE + (uF - V)uE +Vpf =0in Q,

2
divuf =0in Q. )

But what about boundary conditions?
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Boundary conditions

o Navier-Stokes: parabolic system.

— Dirichlet boundary conditions can be enforced: ur{m = 0.

e Euler: ~ hyperbolic system, with a divergence-free condition
divuf = 0.

— Condition on the normal component only (non-penetration
condition): uf - naq = 0.

Consequence:
» Loss of the tangential boundary condition as v — 0;
» Formation of a boundary layer in the vicinity of 02 to correct
the mismatch between 0(= u” - 75q) and uf - T|oq-
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The half-space case: Prandtl's Ansatz

[Prandtl, 1904] in the limit v < 1, if Q = R%,

uE(t,x,y) for y > /v (sol. of 2d Euler),
(txy) = {(up<tx >\/§P<tx,f)>fory V.

The velocity field (u”, vF) satisfies the Prandt| system
P Poy P P P P dpt
Oru” +u Ogu” +v Oyu —Oyyu" = —T(t,x,O)
X

oxu” +oyvP =0,

u|PY:0 =0, Ylim uP(t, %, Y) = uso(t, x) := uF(t, x,0),
—00

P _ P
Ujt=o = Uini
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The Prandtl equation: general remarks

o E
O + uPou” +vPoyu” — dyyu” = —%(t,x,O)
oxu” +oyvP =0,
P . P E (P)
uy_o =0, Ylinoou (t,x,Y) = uso(t,x) := u-(t, x,0),
P P
Ujt=o0 = Uini-
Comments:
» Nonlocal, scalar equation: write vP = —foy uf;

» Pressure is given by Euler flow= data;

» Main source of trouble: nonlocal transport term vPdy u (loss
of one derivative).
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Questions around the Prandtl system

1. Is the Prandtl system well-posed? (i.e. does there exist a
unique solution?) In which function spaces? Under which
conditions on the initial data?

2. When the Prandtl system is well-posed, can we justify the
Prandtl Ansatz? i.e. can we prove that

[u” —ug,ll - 0asv —0

in some suitable function space, where the function uy is
such that

u;’pp(t,x,y)’z{ Eup <t, ,%)m/zvp <tx \yf)) for y < Vv.
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Function spaces

1/2

o L2 space: |ul|;2(q) = (Jq |ul?)
e Sobolev spaces H*, s € N: [[ul[s = 3 < [VEul| 2.
(~ Polynomial decay of Fourier modes)

e Space of analytic functions: 3C > 0, s.t. for all k € N9,

sup [V¥u(x)| < CHHL kL,
xeQ

(~ Exponential decay of Fourier modes)
e Gevrey spaces G7, 7 > 0: 3C > 0, s.t. for all k € N9,

sup [VEu(x)] < CIKHL(k17.
x€Q

(~ Fourier modes decay like exp(—c|k|*/))
If 7> 1, GT contains non trivial functions with compact support.
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The stationary case

Well-posedness under positivity assumptions

Stationary Prandtl system:

o E
udyu + voyu — Oyyu = 7%(X,0)

Oxu+ Oyv = 0, Ujx=0 = Uo (SP)

im u(x,Y) = tUs(x).

U|Y:0 = 07 V|Y:0 - 07 YI—>OO

~ Non-local, “transport-diffusion” equation .



The stationary case

Well-posedness under positivity assumptions

Stationary Prandtl system:

o E
udu + voyu — dyyu = 7%(X,0)
Oxu+0dyv =0, uy—0=uo (SP)

Uy—0=0, Vvy—o=0, Yllnoo u(x,Y) = tso(x).

~ Non-local, “transport-diffusion” equation .

Theorem [Oleinik, 1962]: Let up € Co*(Ry), a > 0. Assume that
up(Y) >0 for Y >0, uj(0) >0, us, > 0 + compatibility
condition.

Then there exists x* > 0 such that (SP) has a unique C? solution
in {(x,Y) €R% 0< x < x*, 0< Y} IF 20 < o then

x* = +00.
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Comments on Oleinik's theorem

» The solution lives as long as there is no recirculation, i.e. as
long as u remains positive.

» Maximal existence interval (0, x*): if x* < 400, then
(i) either dyu(x*,0) =0
(i) or IY* >0, u(x*,Y*)=0.
» Monotony (in Y) is preserved by the equation. If ug is
monotone, scenario (ii) cannot happen.
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lllustration(s) of the “separation” phenomenon
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Separation point: BY |xmx*.Y=0 = 0.

Figure: Cross-section of a flow past a cylinder (source: ONERA, France)
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Goldstein singularity

» Formal computations of a solution by [Goldstein '48,
Stewartson '58] (asymptotic expansion in well-chosen
self-similar variables; see also [Landau, '59] ).
Prediction: there exists a solution such that

Dy Ujy—o(x) ~ V/x* — x as x — x*.



The stationary case

Goldstein singularity

» Formal computations of a solution by [Goldstein '48,
Stewartson '58] (asymptotic expansion in well-chosen
self-similar variables; see also [Landau, '59] ).

Prediction: there exists a solution such that
Oy ujy—(x) ~ v/x* — x as x = x*.

» [D., Masmoudi, '18]: rigorous justification of the Goldstein
singularity. Computation of an approximate solution, using
modulation of variables techniques.
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Goldstein singularity

» Formal computations of a solution by [Goldstein '48,
Stewartson '58] (asymptotic expansion in well-chosen
self-similar variables; see also [Landau, '59] ).

Prediction: there exists a solution such that
Oy ujy—(x) ~ v/x* — x as x = x*.

» [D., Masmoudi, '18]: rigorous justification of the Goldstein
singularity. Computation of an approximate solution, using
modulation of variables techniques.

Open problem: is /x* — x the “stable” separation rate?

» Why “singularity”?

Since v = — fOY Uy, v becomes infinite as x — x™: separation.

P In this case, “generically”, recirculation causes separation.
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Open problems for the stationary case

» Remove Goldstein singularity by adding corrector terms in the
equation, coming from the coupling with the outer flow (triple
deck system?);

» Construct solutions with recirculation (work in progress...
Idea: construct solutions in the vicinity of explicit recirculating
flows).
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Justification of the Prandtl Ansatz

Overall idea: far from the separation point, as long as there is no
re-circulation, the Prandtl Ansatz can be justified.
» [Guo& Nguyen, '17]: Navier-Stokes system above a moving
plate (non-zero boundary condition), later extended by [lyer];
» [Gérard-Varet& Maekawa, '18]: main order term in Prandtl is
a shear flow;
» [Guo& lyer, '18]: main order term in Prandtl is the Blasius
boundary layer (self-similar solution).
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The time-dependent case

A reminder...

Time-dependent Prandtl equation (P):

Oru + udyu + vOy u—0yyu = —%’lf(t,x, 0)

Oxu+ Oyv =0,

uy—o =0, y||_r>nOo u(t,x,Y) = uxo(t,x) := uE(t,X,O),
Ujt=0 = Uini-

~ (Degenerate) heat equation d;u — dyyu
+ local transport term udyu
+ non-local transport term with loss of one derivative

Y
V(')yu—/ Uy.
Jo



The time-dependent case

Mathematical results: well-posedness in high regularity

spaces/monotonic contexts...

WP in high regularity spaces:
» Local well-posedness starting from data that are analytic in x:
[Sammartino& Caflisch, '98; Lombardo, Cannone
&Sammartino; Kukavica&Vicol; Kukavica, Masmoudi,

Vicol&Wong];
» Extensions (e.g. Gevrey spaces): [Kukavica& Vicol, '13;
Gérard-Varet& Masmoudi, '14; Maekawa, '14]
WP for monotone solutions: [Oleinik; Masmoudi&Wong;
Alexandre, Wang, Xu&Yang...]



The time-dependent case

. and instabilities in Sobolev spaces

> Instabilities develop in short time in Sobolev spaces
[Grenier; Gérard-Varet&Dormy; Grenier&Nguyen...]
Proof relies on computation of an approximate solution whose
k'th Fourier mode grows like exp(+/|k|t).

» Starting from real analytic initial data, some solutions display
singularities in finite time (van Dommelen-Shen singularity).
[E& Engquist, Kukavica, Vicol&Wang]: virial type argument
(blow-up of some Sobolev norm in finite time).

Very recently, quantitative description of this singularity
[Collot, Ghoul, Ibrahim&Masmoudi].

» The Prandtl Ansatz is invalid in Sobolev spaces, starting
from an initial data for (NS) of the form (Us(y/+/v),0)
[Grenier '00; Grenier, Guo& Nguyen, '16; Grenier, & Nguyen,
'18].
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Interactive boundary layer models

Intuition: [Catherall& Mangler; Le Balleur; Carter; Veldman...]
When a singularity is formed in the Prandtl system and the
expansion ceases to be valid, the coupling with the interior flow
must be considered at a higher order in v, with potential
stabilizing effects.

Cornerstone: notion of blowing velocity/displacement thickness:

Y Y
vP(t, x, Y):—/ ufz—Y@Xuoo—ax/ (uP — uy).
0 Jo

TV
="blowing velocity"”

Interactive boundary layer model: couple the Euler and the
boundary layer systems by prescribing

vE(t, x,0) = vy /oo(uC>O —uP(t,x,Y))dY.
0

Bad news: even worse than Prandtl! [D., Dietert, Gérard-Varet,
Marbach, '17]



The time-dependent case

e Stationary case: the only mathematical setting in which
solutions are known up to now is the case of positive solutions.
For such a setting, we have a good understanding of singularities
close to the separation point, and we are able to justify the Ansatz
far from the separation.

e Time-dependent case: WP in high regularity settings and for
monotone data.

In the non-monotone case, strong instabilities develop in Sobolev
spaces; the boundary layer Ansatz fails.



The time-dependent case

Conclusion

e Small scale structures (both in x AND y) appear close to the
wall in general (cf. instabilities): vortices.

e The boundary layer Ansatz should be replaced by something else,
accounting for small scale vortices. But... what ? Statistical
description?
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