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The Prandtl boundary layer equation

Fluids with small viscosity

Goal: understand the behavior of 2d fluids with small viscosity in a
domain Ω ⊂ R2.

∂tu
ν + (uν · ∇)uν +∇pν − ν∆uν = 0 in Ω,

div uν = 0 in Ω,

uν|∂Ω = 0, uν|t=0 = uνini .

(1)

→ Singular perturbation problem.
Formally, if uν → uE , and if ∆uν remains bounded, then uE is a
solution of the Euler system

∂tu
E + (uE · ∇)uE +∇pE = 0 in Ω,

div uE = 0 in Ω.
(2)

But what about boundary conditions?



The Prandtl boundary layer equation

Boundary conditions

• Navier-Stokes: parabolic system.
→ Dirichlet boundary conditions can be enforced: uν|∂Ω = 0.
• Euler: ∼ hyperbolic system, with a divergence-free condition
div uE = 0.
→ Condition on the normal component only (non-penetration
condition): uE · n|∂Ω = 0.

Consequence:
I Loss of the tangential boundary condition as ν → 0;
I Formation of a boundary layer in the vicinity of ∂Ω to correct

the mismatch between 0(= uν · τ|∂Ω) and uE · τ|∂Ω.
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The Prandtl boundary layer equation

The half-space case: Prandtl’s Ansatz

[Prandtl, 1904] in the limit ν � 1, if Ω = R2
+,

uν(t, x , y) '

{
uE (t, x , y) for y �

√
ν (sol. of 2d Euler),(

uP
(
t, x , y√

ν

)
,
√
νvP

(
t, x , y√

ν

))
for y .

√
ν.

The velocity field (uP , vP) satisfies the Prandtl system

∂tu
P + uP∂xu

P + vP∂Y u
P − ∂YY uP = −∂p

E

∂x
(t, x , 0)

∂xu
P + ∂Y v

P = 0,

uP
|Y=0 = 0, lim

Y→∞
uP(t, x ,Y ) = u∞(t, x) := uE (t, x , 0),

uP|t=0 = uPini .



The Prandtl boundary layer equation

The Prandtl equation: general remarks

∂tu
P + uP∂xu

P + vP∂Y u
P − ∂YY uP = −∂p

E

∂x
(t, x , 0)

∂xu
P + ∂Y v

P = 0,

uP
|Y=0 = 0, lim

Y→∞
uP(t, x ,Y ) = u∞(t, x) := uE (t, x , 0),

uP|t=0 = uPini .

(P)

Comments:

I Nonlocal, scalar equation: write vP = −
∫ Y

0 uPx ;

I Pressure is given by Euler flow= data;

I Main source of trouble: nonlocal transport term vP∂Y u
P (loss

of one derivative).



The Prandtl boundary layer equation

Questions around the Prandtl system

1. Is the Prandtl system well-posed? (i.e. does there exist a
unique solution?) In which function spaces? Under which
conditions on the initial data?

2. When the Prandtl system is well-posed, can we justify the
Prandtl Ansatz? i.e. can we prove that

‖uν − uνapp‖ → 0 as ν → 0

in some suitable function space, where the function uνapp is
such that

uνapp(t, x , y) '

{
uE (t, x , y) for y �

√
ν(

uP
(
t, x , y√

ν

)
,
√
νvP

(
t, x , y√

ν

))
for y .

√
ν.



The Prandtl boundary layer equation

Function spaces

• L2 space: ‖u‖L2(Ω) =
(∫

Ω |u|
2
)1/2

.

• Sobolev spaces Hs , s ∈ N: ‖u‖Hs =
∑
|k|≤s ‖∇ku‖L2 .

(∼ Polynomial decay of Fourier modes)
• Space of analytic functions: ∃C > 0, s.t. for all k ∈ Nd ,

sup
x∈Ω
|∇ku(x)| ≤ C |k|+1|k |!.

(∼ Exponential decay of Fourier modes)
• Gevrey spaces G τ , τ > 0: ∃C > 0, s.t. for all k ∈ Nd ,

sup
x∈Ω
|∇ku(x)| ≤ C |k|+1(|k |!)τ .

(∼ Fourier modes decay like exp(−c |k |1/τ ))
If τ > 1, G τ contains non trivial functions with compact support.
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The stationary case

Well-posedness under positivity assumptions

Stationary Prandtl system:

u∂xu + v∂Y u − ∂YY u = −∂p
E

∂x
(x , 0)

∂xu + ∂Y v = 0, u|x=0 = u0

u|Y=0 = 0, v|Y=0 = 0, lim
Y→∞

u(x ,Y ) = u∞(x).

(SP)

∼ Non-local, “transport-diffusion” equation .
Theorem [Oleinik, 1962]: Let u0 ∈ C2,α

b (R+), α > 0. Assume that
u0(Y ) > 0 for Y > 0, u′0(0) > 0, u∞ > 0 + compatibility
condition.
Then there exists x∗ > 0 such that (SP) has a unique C2 solution

in {(x ,Y ) ∈ R2, 0 ≤ x < x∗, 0 ≤ Y }. If ∂p
E (x ,0)
∂x ≤ 0, then

x∗ = +∞.
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The stationary case

Comments on Oleinik’s theorem

I The solution lives as long as there is no recirculation, i.e. as
long as u remains positive.

I Maximal existence interval (0, x∗): if x∗ < +∞, then

(i) either ∂Y u(x∗, 0) = 0
(ii) or ∃Y ∗ > 0, u(x∗,Y ∗) = 0.

I Monotony (in Y ) is preserved by the equation. If u0 is
monotone, scenario (ii) cannot happen.



The stationary case

Illustration(s) of the “separation” phenomenon
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Separation point: ∂u
∂Y |x=x∗,Y=0

= 0.

Figure: Cross-section of a flow past a cylinder (source: ONERA, France)



The stationary case

Goldstein singularity

I Formal computations of a solution by [Goldstein ’48,
Stewartson ’58] (asymptotic expansion in well-chosen
self-similar variables; see also [Landau, ’59] ).
Prediction: there exists a solution such that
∂Y u|Y=0(x) ∼

√
x∗ − x as x → x∗.

I [D., Masmoudi, ’18]: rigorous justification of the Goldstein
singularity. Computation of an approximate solution, using
modulation of variables techniques.
Open problem: is

√
x∗ − x the “stable” separation rate?

I Why “singularity”?
Since v = −

∫ Y
0 ux , v becomes infinite as x → x∗: separation.

I In this case, “generically”, recirculation causes separation.
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The stationary case

Open problems for the stationary case

I Remove Goldstein singularity by adding corrector terms in the
equation, coming from the coupling with the outer flow (triple
deck system?);

I Construct solutions with recirculation (work in progress...
Idea: construct solutions in the vicinity of explicit recirculating
flows).



The stationary case

Justification of the Prandtl Ansatz

Overall idea: far from the separation point, as long as there is no
re-circulation, the Prandtl Ansatz can be justified.

I [Guo& Nguyen, ’17]: Navier-Stokes system above a moving
plate (non-zero boundary condition), later extended by [Iyer];

I [Gérard-Varet& Maekawa, ’18]: main order term in Prandtl is
a shear flow;

I [Guo& Iyer, ’18]: main order term in Prandtl is the Blasius
boundary layer (self-similar solution).
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The time-dependent case

A reminder...

Time-dependent Prandtl equation (P):

∂tu + u∂xu + v∂Y u−∂YY u = −∂p
E

∂x
(t, x , 0)

∂xu + ∂Y v = 0,

u|Y=0 = 0, lim
Y→∞

u(t, x ,Y ) = u∞(t, x) := uE (t, x , 0),

u|t=0 = uini .

∼ (Degenerate) heat equation ∂tu − ∂YY u
+ local transport term u∂xu
+ non-local transport term with loss of one derivative

v∂Y u = −
∫ Y

0
ux .



The time-dependent case

Mathematical results: well-posedness in high regularity
spaces/monotonic contexts...

WP in high regularity spaces:

I Local well-posedness starting from data that are analytic in x :
[Sammartino&Caflisch, ’98; Lombardo, Cannone
&Sammartino; Kukavica&Vicol; Kukavica, Masmoudi,
Vicol&Wong];

I Extensions (e.g. Gevrey spaces): [Kukavica& Vicol, ’13;
Gérard-Varet& Masmoudi, ’14; Maekawa, ’14]

WP for monotone solutions: [Oleinik; Masmoudi&Wong;
Alexandre, Wang, Xu&Yang...]



The time-dependent case

... and instabilities in Sobolev spaces

I Instabilities develop in short time in Sobolev spaces
[Grenier; Gérard-Varet&Dormy; Grenier&Nguyen...]
Proof relies on computation of an approximate solution whose
k’th Fourier mode grows like exp(

√
|k |t).

I Starting from real analytic initial data, some solutions display
singularities in finite time (van Dommelen-Shen singularity).
[E& Engquist, Kukavica, Vicol&Wang]: virial type argument
(blow-up of some Sobolev norm in finite time).
Very recently, quantitative description of this singularity
[Collot, Ghoul, Ibrahim&Masmoudi].

I The Prandtl Ansatz is invalid in Sobolev spaces, starting
from an initial data for (NS) of the form (Us(y/

√
ν), 0)

[Grenier ’00; Grenier, Guo& Nguyen, ’16; Grenier, & Nguyen,
’18].



The time-dependent case

Interactive boundary layer models

Intuition: [Catherall& Mangler; Le Balleur; Carter; Veldman...]
When a singularity is formed in the Prandtl system and the
expansion ceases to be valid, the coupling with the interior flow
must be considered at a higher order in ν, with potential
stabilizing effects.
Cornerstone: notion of blowing velocity/displacement thickness:

vP(t, x ,Y ) = −
∫ Y

0
uPx = −Y ∂xu∞ − ∂x

∫ Y

0
(uP − u∞)︸ ︷︷ ︸

=“blowing velocity”

.

Interactive boundary layer model: couple the Euler and the
boundary layer systems by prescribing

vE (t, x , 0) =
√
ν∂x

∫ ∞
0

(u∞ − uP(t, x ,Y )) dY .

Bad news: even worse than Prandtl! [D., Dietert, Gérard-Varet,
Marbach, ’17]



The time-dependent case

Summary

• Stationary case: the only mathematical setting in which
solutions are known up to now is the case of positive solutions.
For such a setting, we have a good understanding of singularities
close to the separation point, and we are able to justify the Ansatz
far from the separation.
• Time-dependent case: WP in high regularity settings and for
monotone data.
In the non-monotone case, strong instabilities develop in Sobolev
spaces; the boundary layer Ansatz fails.



The time-dependent case

Conclusion

• Small scale structures (both in x AND y) appear close to the
wall in general (cf. instabilities): vortices.
• The boundary layer Ansatz should be replaced by something else,
accounting for small scale vortices. But... what ? Statistical
description?

Thank you for your attention !
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