Recent advances in fluid boundary layer theory

Anne-Laure Dalibard (Laboratoire Jacques-Louis Lions, Sorbonne Université)

Journées de Physique Statistique January 30th&31st, 2020 - Paris

Established by the European Commission

[The Prandtl boundary layer equation](#page-2-0)

[The stationary case](#page-9-0)

[The time-dependent case](#page-19-0)

Plan

[The Prandtl boundary layer equation](#page-2-0)

[The stationary case](#page-9-0)

[The time-dependent case](#page-19-0)

Fluids with small viscosity

Goal: understand the behavior of 2d fluids with small viscosity in a domain $\Omega \subset \mathbf{R}^2$.

$$
\partial_t \mathbf{u}^{\nu} + (\mathbf{u}^{\nu} \cdot \nabla) \mathbf{u}^{\nu} + \nabla \rho^{\nu} - \nu \Delta \mathbf{u}^{\nu} = 0 \text{ in } \Omega, \ndiv \mathbf{u}^{\nu} = 0 \text{ in } \Omega, \mathbf{u}^{\nu}_{|\partial\Omega} = 0, \quad \mathbf{u}^{\nu}_{|t=0} = \mathbf{u}^{\nu}_{ini}.
$$
\n(1)

 \rightarrow Singular perturbation problem. Formally, if $\mathbf{u}^{\nu} \to \mathbf{u}^E$, and if $\Delta \mathbf{u}^{\nu}$ remains bounded, then \mathbf{u}^E is a solution of the Euler system

$$
\partial_t \mathbf{u}^E + (\mathbf{u}^E \cdot \nabla) \mathbf{u}^E + \nabla \rho^E = 0 \text{ in } \Omega,
$$

div $\mathbf{u}^E = 0$ in Ω . (2)

But what about boundary conditions?

Boundary conditions

- Navier-Stokes: parabolic system.
- \rightarrow Dirichlet boundary conditions can be enforced: $\mathbf{u}^{\nu}_{|\partial\Omega} = 0.$
- Euler: ∼ hyperbolic system, with a divergence-free condition div $\mathbf{u}^E=0$.

 \rightarrow Condition on the normal component only (non-penetration condition): $\mathbf{u}^E \cdot \mathbf{n}_{|\partial\Omega} = 0$.

Consequence:

- ► Loss of the tangential boundary condition as $\nu \rightarrow 0$;
- \triangleright Formation of a boundary layer in the vicinity of $\partial\Omega$ to correct the mismatch between $0(=\mathbf{u}^{\nu}\cdot \tau_{|\partial\Omega})$ and $\mathbf{u}^E\cdot \tau_{|\partial\Omega}.$

The half-space case: Prandtl's Ansatz

[Prandtl, 1904] in the limit $\nu \ll 1$, if $\Omega = \mathbf{R}^2_+$,

$$
\mathbf{u}^{\nu}(t,x,y) \simeq \begin{cases} \mathbf{u}^{\mathsf{E}}(t,x,y) \text{ for } y \gg \sqrt{\nu} \text{ (sol. of 2d Euler)}, \\ \left(\mathbf{u}^{\mathsf{P}}\left(t,x,\frac{y}{\sqrt{\nu}}\right), \sqrt{\nu} \mathbf{v}^{\mathsf{P}}\left(t,x,\frac{y}{\sqrt{\nu}}\right) \right) \text{ for } y \lesssim \sqrt{\nu}. \end{cases}
$$

The velocity field (u^P,v^P) satisfies the Prandtl system

$$
\partial_t u^P + u^P \partial_x u^P + v^P \partial_y u^P - \partial_y y u^P = -\frac{\partial p^E}{\partial x}(t, x, 0)
$$

$$
\partial_x u^P + \partial_y v^P = 0,
$$

$$
\mathbf{u}_{|Y=0}^P = 0, \quad \lim_{Y \to \infty} u^P(t, x, Y) = u_{\infty}(t, x) := u^E(t, x, 0),
$$

$$
u_{|t=0}^P = u_{\text{ini}}^P.
$$

The Prandtl equation: general remarks

$$
\partial_t u^P + u^P \partial_x u^P + v^P \partial_y u^P - \partial_{yy} u^P = -\frac{\partial p^E}{\partial x}(t, x, 0)
$$

$$
\partial_x u^P + \partial_y v^P = 0,
$$

$$
\mathbf{u}_{|Y=0}^P = 0, \quad \lim_{Y \to \infty} u^P(t, x, Y) = u_{\infty}(t, x) := u^E(t, x, 0),
$$

$$
u_{|t=0}^P = u_{\text{ini}}^P.
$$
 (P)

Comments:

- ▶ Nonlocal, scalar equation: write $v^P = -\int_0^Y u_x^P$;
- \triangleright Pressure is given by Euler flow = data;

► Main source of trouble: nonlocal transport term $v^P \partial \gamma u^P$ (loss of one derivative).

Questions around the Prandtl system

- 1. Is the Prandtl system well-posed? (i.e. does there exist a unique solution?) In which function spaces? Under which conditions on the initial data?
- 2. When the Prandtl system is well-posed, can we justify the Prandtl Ansatz? i.e. can we prove that

$$
\|\mathbf{u}^\nu - \mathbf{u}^\nu_\mathsf{app}\| \to 0 \text{ as } \nu \to 0
$$

in some suitable function space, where the function $\mathbf{u}_{\mathsf{app}}^\nu$ is such that

$$
\mathbf{u}_{\mathrm{app}}^{\nu}(t,x,y) \simeq \begin{cases} \mathbf{u}^{E}(t,x,y) \text{ for } y \gg \sqrt{\nu} \\ \left(u^{P}\left(t,x,\frac{y}{\sqrt{\nu}}\right),\sqrt{\nu}v^{P}\left(t,x,\frac{y}{\sqrt{\nu}}\right)\right) \text{ for } y \lesssim \sqrt{\nu} \end{cases}
$$

Function spaces

- L² space: $||u||_{L^2(\Omega)} = (\int_{\Omega} |u|^2)^{1/2}$.
- \bullet Sobolev spaces H^s , $s\in {\bf N}\colon\,\|u\|_{H^s}=\sum_{|k|\leq s}\|\nabla^k u\|_{L^2}.$
- (∼ Polynomial decay of Fourier modes)
- Space of analytic functions: $\exists C > 0$, s.t. for all $k \in \mathbb{N}^d$,

$$
\sup_{x\in\Omega}|\nabla^ku(x)|\leq C^{|k|+1}|k|!
$$

(∼ Exponential decay of Fourier modes) • Gevrey spaces G^{τ} , $\tau > 0$: $\exists C > 0$, s.t. for all $k \in \mathsf{N}^d$,

$$
\sup_{x\in\Omega}|\nabla^ku(x)|\leq C^{|k|+1}(|k|!)^{\tau}.
$$

(∼ Fourier modes decay like exp($-c|k|^{1/\tau})$) If $\tau > 1$, G^{τ} contains non trivial functions with compact support.

[The Prandtl boundary layer equation](#page-2-0)

[The stationary case](#page-9-0)

[The time-dependent case](#page-19-0)

Well-posedness under positivity assumptions

Stationary Prandtl system:

$$
u\partial_x u + v\partial_Y u - \partial_{YY} u = -\frac{\partial p^E}{\partial x}(x, 0)
$$

$$
\partial_x u + \partial_Y v = 0, \quad u_{|x=0} = u_0 \quad (SP)
$$

$$
u_{|Y=0} = 0, \quad v_{|Y=0} = 0, \quad \lim_{Y \to \infty} u(x, Y) = u_{\infty}(x).
$$

\sim Non-local, "transport-diffusion" equation . **Theorem** [Oleinik, 1962]: Let $u_0 \in C_b^{2,\alpha}(\mathbf{R}_+)$, $\alpha > 0$. Assume that $u_0(Y) > 0$ for $Y > 0$, $u_0'(0) > 0$, $u_{\infty} > 0 +$ compatibility condition. Then there exists $x^* > 0$ such that [\(SP\)](#page-10-0) has a unique C^2 solution

 $\text{in } \{(x, Y) \in \mathbb{R}^2, \ 0 \leq x < x^*, \ 0 \leq Y\}.$ If $\frac{\partial p^{E}(x,0)}{\partial x} \leq 0$, then $x^* = +\infty$.

Well-posedness under positivity assumptions

Stationary Prandtl system:

$$
u\partial_x u + v\partial_Y u - \partial_{YY} u = -\frac{\partial p^E}{\partial x}(x, 0)
$$

$$
\partial_x u + \partial_Y v = 0, \quad u_{|x=0} = u_0 \quad (SP)
$$

$$
u_{|Y=0} = 0, \quad v_{|Y=0} = 0, \quad \lim_{Y \to \infty} u(x, Y) = u_{\infty}(x).
$$

 \sim Non-local, "transport-diffusion" equation . **Theorem** [Oleinik, 1962]: Let $u_0 \in C_b^{2,\alpha}(\mathbf{R}_+)$, $\alpha > 0$. Assume that $u_0(Y) > 0$ for $Y > 0$, $u_0'(0) > 0$, $u_{\infty} > 0 +$ compatibility condition.

Then there exists $x^* > 0$ such that [\(SP\)](#page-10-0) has a unique C^2 solution $\text{in } \{(x, Y) \in \mathbf{R}^2, 0 \leq x < x^*, 0 \leq Y\}$. If $\frac{\partial p^{E}(x,0)}{\partial x} \leq 0$, then $x^* = +\infty$.

Comments on Oleinik's theorem

- \triangleright The solution lives as long as there is no recirculation, i.e. as long as u remains positive.
- A Maximal existence interval $(0, x^*)$: if $x^* < +\infty$, then (i) either $\partial_Y u(x^*,0) = 0$ (ii) or $\exists Y^* > 0$, $u(x^*, Y^*) = 0$.
- Monotony (in Y) is preserved by the equation. If u_0 is monotone, scenario (ii) cannot happen.

$Illustration(s)$ of the "separation" phenomenon

Figure: Cross-section of a flow past a cylinder (source: ONERA, France)

Goldstein singularity

- \triangleright Formal computations of a solution by $[Goldstein 748,$ Stewartson '58] (asymptotic expansion in well-chosen self-similar variables; see also [Landau, '59]). Prediction: there exists a solution such that $\partial_Y u_{|Y=0}(x) \sim$ ا⊐
∕ $\overline{x^*-x}$ as $x \to x^*$.
- \triangleright [D., Masmoudi, '18]: rigorous justification of the Goldstein singularity. Computation of an approximate solution, using modulation of variables techniques. modulation of variables techniques.
Open problem: is $\sqrt{x^* - x}$ the "stable" separation rate?
- \blacktriangleright Why "singularity"?

Since $v = -\int_0^Y u_{x}$, v becomes infinite as $x \to x^*$: separation.

 \blacktriangleright In this case, "generically", recirculation causes separation.

Goldstein singularity

- \triangleright Formal computations of a solution by $[Goldstein 748,$ Stewartson '58] (asymptotic expansion in well-chosen self-similar variables; see also [Landau, '59]). Prediction: there exists a solution such that $\partial_Y u_{|Y=0}(x) \sim$ ا⊐
∕ $\overline{x^*-x}$ as $x \to x^*$.
- \triangleright [D., Masmoudi, '18]: rigorous justification of the Goldstein singularity. Computation of an approximate solution, using modulation of variables techniques. α open problem: is $\sqrt{x^*-x}$ the "stable" separation rate?
- \blacktriangleright Why "singularity"?

Since $v = -\int_0^Y u_{x}$, v becomes infinite as $x \to x^*$: separation.

 \blacktriangleright In this case, "generically", recirculation causes separation.

Goldstein singularity

- \triangleright Formal computations of a solution by $[Goldstein 748,$ Stewartson '58] (asymptotic expansion in well-chosen self-similar variables; see also [Landau, '59]). Prediction: there exists a solution such that $\partial_Y u_{|Y=0}(x) \sim$ ا⊐
∕ $\overline{x^*-x}$ as $x \to x^*$.
- \triangleright [D., Masmoudi, '18]: rigorous justification of the Goldstein singularity. Computation of an approximate solution, using modulation of variables techniques. α open problem: is $\sqrt{x^*-x}$ the "stable" separation rate?
- \blacktriangleright Why "singularity"? Since $v = -\int_0^Y u_x$, v becomes infinite as $x \to x^*$: separation. \blacktriangleright In this case, "generically", recirculation causes separation.

Open problems for the stationary case

- \triangleright Remove Goldstein singularity by adding corrector terms in the equation, coming from the coupling with the outer flow (triple deck system?);
- \triangleright Construct solutions with recirculation (work in progress... Idea: construct solutions in the vicinity of explicit recirculating flows).

Justification of the Prandtl Ansatz

Overall idea: far from the separation point, as long as there is no re-circulation, the Prandtl Ansatz can be justified.

- \triangleright [Guo& Nguyen, '17]: Navier-Stokes system above a moving plate (non-zero boundary condition), later extended by [Iyer];
- \triangleright [Gérard-Varet& Maekawa, '18]: main order term in Prandtl is a shear flow;
- \triangleright [Guo& Iyer, '18]: main order term in Prandtl is the Blasius boundary layer (self-similar solution).

[The Prandtl boundary layer equation](#page-2-0)

[The stationary case](#page-9-0)

[The time-dependent case](#page-19-0)

A reminder...

Time-dependent Prandtl equation (P):

$$
\partial_t u + u \partial_x u + v \partial_y u - \partial_y \gamma u = -\frac{\partial p^E}{\partial x}(t, x, 0)
$$

$$
\partial_x u + \partial_y v = 0,
$$

$$
\mathbf{u}_{|Y=0} = 0, \lim_{Y \to \infty} u(t, x, Y) = u_{\infty}(t, x) := u^E(t, x, 0),
$$

$$
u_{|t=0} = u_{\text{ini}}.
$$

- \sim (Degenerate) heat equation $\partial_t u \partial_{YY} u$
- + local transport term $u\partial_x u$
- + non-local transport term with loss of one derivative

$$
v\partial_Y u = -\int_0^Y u_X.
$$

Mathematical results: well-posedness in high regularity spaces/monotonic contexts...

WP in high regularity spaces:

- \blacktriangleright Local well-posedness starting from data that are analytic in x: [Sammartino&Caflisch, '98; Lombardo, Cannone &Sammartino; Kukavica&Vicol; Kukavica, Masmoudi, Vicol&Wong];
- ▶ Extensions (e.g. Gevrey spaces): [Kukavica& Vicol, '13; Gérard-Varet& Masmoudi, '14; Maekawa, '14]

WP for monotone solutions: [Oleinik; Masmoudi&Wong; Alexandre, Wang, Xu&Yang...]

... and instabilities in Sobolev spaces

- \triangleright Instabilities develop in short time in Sobolev spaces [Grenier; Gérard-Varet&Dormy; Grenier&Nguyen...] Proof relies on computation of an approximate solution whose k'th Fourier mode grows like exp $(\sqrt{|k|}t)$.
- \triangleright Starting from real analytic initial data, some solutions display singularities in finite time (van Dommelen-Shen singularity). [E& Engquist, Kukavica, Vicol&Wang]: virial type argument (blow-up of some Sobolev norm in finite time). Very recently, quantitative description of this singularity [Collot, Ghoul, Ibrahim&Masmoudi].
- ▶ The Prandtl Ansatz is invalid in Sobolev spaces, starting from an initial data for (NS) of the form $(\,U_\mathsf{s}(y/\sqrt{\nu}),0)$ [Grenier '00; Grenier, Guo& Nguyen, '16; Grenier, & Nguyen, '18].

Interactive boundary layer models

Intuition: [Catherall& Mangler; Le Balleur; Carter; Veldman...] When a singularity is formed in the Prandtl system and the expansion ceases to be valid, the coupling with the interior flow must be considered at a higher order in ν , with potential stabilizing effects.

Cornerstone: notion of blowing velocity/displacement thickness:

$$
v^{P}(t, x, Y) = -\int_{0}^{Y} u_{x}^{P} = -Y \partial_{x} u_{\infty} - \underbrace{\partial_{x} \int_{0}^{Y} (u^{P} - u_{\infty})}_{= \text{"blowing velocity} }.
$$

Interactive boundary layer model: couple the Euler and the boundary layer systems by prescribing

$$
v^{E}(t,x,0)=\sqrt{\nu}\partial_{x}\int_{0}^{\infty}(u_{\infty}-u^{P}(t,x,Y)) dY.
$$

Bad news: even worse than Prandt!! [D., Dietert, Gérard-Varet, Marbach, '17]

Summary

• Stationary case: the only mathematical setting in which solutions are known up to now is the case of positive solutions. For such a setting, we have a good understanding of singularities close to the separation point, and we are able to justify the Ansatz far from the separation.

• Time-dependent case: WP in high regularity settings and for monotone data.

In the non-monotone case, strong instabilities develop in Sobolev spaces; the boundary layer Ansatz fails.

Conclusion

- Small scale structures (both in x AND y) appear close to the wall in general (cf. instabilities): vortices.
- The boundary layer Ansatz should be replaced by something else, accounting for small scale vortices. But... what ? Statistical description?

THANK YOU FOR YOUR ATTENTION !